
Jupyter outside of data
science

Tomislav Maričević

Jupyter and notebook software – Ipython & Jupyter

● Ipython Notebook == Jupyter Notebook

Jupyter and notebook software – JupyterLab

Jupyter and notebook software – JupyterHub

● JupyterLab is single user
○ Multiple people can use it at the same time, but they all share the filesystem and configuration

● JupyterHub spawns new JupyterLab instances for each user

Local client, remote kernel

● In-browser IDE is not optimal UX
● Pycharm & VS Code support remote kernels

Nuanced discussion

“I don't like notebooks” - Joel Grus, JupyterCon 2018

VS

”I Like Notebooks” - Jeremy Howard, almost on JupyterCon 2020

https://www.youtube.com/watch?v=7jiPeIFXb6U
https://www.youtube.com/watch?v=9Q6sLbz37gk

The “never use notebooks” crowd

● Hidden state
○ Need to run cells exactly once, in order, with exact 3rd party dependencies

● Less rigor
● Hard to test
● Promotes bad habits
● Worse UI than your own editor

○ Autocomplete, linters, autoformatting, etc.

The “use notebooks for everything” crowd

● Tests, docs and code are co-located
● Exploratory coding in a live coding environment
● Diffs can show changes in output next to changes in code
● Nbdev solves a lot of the complaints

https://nbdev.fast.ai/

Our setup

● Python
● Django
● PostgreSQL
● AWS
● JupyterLab

JupyterLab setup

● Dedicated EC2 instance running JupyterLab
● CodeDeploy for delivering new code to server
● Multi-user environment via JupyterLab
● django-extensions kernel for Django integration

○ Use production settings for access to production environment

Issues

● No elegant way to monitor progress if network connection is lost between
kernel and frontend

○ Workaround: Save progress to file
● No way to automatically shut down old kernels

○ Workaround: JupyterHub
● AWS doesn’t have a nice general-purpose managed solution

○ SageMaker is very data science oriented
● Not very git-friendly

○ Workaround: use Github, or use tools to convert .ipynb to .py files
● It’s a shared environment with shared resources

○ Loading 16 GB .csv into memory ruins the party for everyone

Things I learned the hard way:

● Add cell execution timestamps
○ Notebooks save complete state, it’s nice to know from how far back the state is

● Add docstrings to your functions
○ You’re not going to remember which problem you were solving in 6 months

● Shut down your unused kernels
○ They accumulate and use up resources even when idle

Our use case #1: Operations

● Running one-off ops on production infrastructure
● Notebooks are an alternative to running scripts in shell on production servers
● Easier to develop than writing script locally and then uploading or C/P to

production shell

Our use case #2: Data Exploration

● Related to data science, but less formal
● E.g. investigate why some email campaign didn’t do well
● Practically impossible to do in the shell – need the visualization capabilities

Thank you!

 @tmrcv

 github.com/tmarice

 tmarice.dev

