
Taskmaster
Solving Deployment Headaches Caused By

Long-Running Celery Jobs

Tomislav Maričević | https://tmarice.dev | @tmrcv | github.com/tmarice

https://tmarice.dev

Agenda

1. Celery
2. The Problem
3. Considered Solutions
4. Chosen Solution
5. The Good, The Bad (No Ugly)
6. Q/A

The Problem

● Stack:
○ Django
○ Postgres
○ Celery
○ RabbitMQ
○ AWS EC2
○ Supervisor

● Celery
○ Prefetch multiplier = 4x
○ Late acknowledgment = False
○ No task timeouts

The Problem - The Simple Life

The Problem - Life Gets Complicated

Supervisor
● stopwaitsecs = 600
● killasgroup = true

The Problem - Life’s No Fun Anymore

The Problem - Recap

● Many Celery workers on multiple servers
● Task loss is not acceptable
● Long tasks run often
● Deployment is stressful

○ No DB migrations → you need to know which workers have to be restarted
○ DB migrations → try to find known times in day when chance of long tasks is low
○ Even with celery inspect active, there’s a small possibility a task starts right after
○ Explaining the process to new hires is not possible (because there is no process)
○ Time from PR approval to deploy is very high - if you miss your chance, try again tomorrow
○ Deployment errors happen often

Goals

● The deployment process can be manual, but very straightforward.

● Multiple developers should be able to deploy every day.

● Deployment shouldn’t be (very) stressful.

● We should not drastically reduce development speed or code readability.

● We should not end up maintaining an overly complex tech stack.

Alternative 1:
Remove Cold Shutdown

Pros

● No changes in Python code
● No loss of work during deployment

Cons

● Supervisor doesn’t support this
● Migrations are problematic

Alternative 2:
Organize Tasks With a Daily/Weekly Deployment Window

Pros

● No code changes required

Cons

● Not scalable as the number of tasks grows
● Limits the number of daily deploys
● Might be harder to roll back changes or

do follow-up deployments

Alternative 3:
Make All Workers Stoppable In Reasonable Time

Pros

● Very clear deployment process
● Eliminates migration problems

Cons

● Work will be lost after worker terminates
● Would have to refactor a large number of tasks

Solution - All Workers Stoppable In Reasonable Time

All tasks are either:

● Uninterruptible and very short
○ < 1 min duration
○ Anything with 3rd party API access - e.g. email sending

● Interruptible
○ We have to be able to interrupt the task at ANY point and be able to simply re-run it without

anything bad happening
○ Considerations: DB, ES, Redis, other Celery tasks!
○ acks_late=True

Chosen Solution

Chosen Solution - Deployment Script

Utilizes Celery control interface

https://docs.celeryq.dev/en/stable/reference/celery.app.control.html

1. Instruct all Celery workers to stop fetching new tasks
2. Every 20s, check if all worker are idle or are they running only tasks marked

with acks_late=True
3. If 10 minutes pass without this condition being true

a. Instruct workers to continue consuming
b. Output the list of non-acks_late tasks still running after 10 minutes
c. Tell dev to abort deployment

4. If condition is true, tell dev to proceed

https://docs.celeryq.dev/en/stable/reference/celery.app.control.html

The Good, The Bad

Pros

● Deployments are stress-free
● Allows gradual improvement

Cons

● Someone needs to be the tasks police
● A lot of older code needs to be refactored
● Hard to reason about interruptibility if tasks

delay other tasks

Task Guidelines

Short

● Optimize ORM queries
● Convert into a chain of shorter tasks

Interruptible

● acks_late=True
● Gather data in Python, persist to DB at the end – short transaction
● Avoid delaying other tasks
● For really long tasks, cache intermediate results – durable execution

Celery alternatives with durable execution

● https://temporal.io/
● https://www.dbos.dev/
● https://hatchet.run/

● https://github.com/RealOrangeOne/django-tasks

https://temporal.io/
https://www.dbos.dev/
https://hatchet.run/
https://github.com/RealOrangeOne/django-tasks

Thank you!

Q & A!

Tomislav Maričević | https://tmarice.dev | @tmrcv | github.com/tmarice

https://tmarice.dev

